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Abstract
We show that the conditionally exactly solvable potential of Dutt et al (1995
J. Phys. A: Math. Gen. 28 L107) and the exactly solvable potential from which
it is derived form a dual system.

PACS numbers: 03.65.Ca, 03.65.Ge, 02.90.+p

Conditionally exactly solvable (CES) potentials have received considerable attention in recent
years [1–5]. The main feature of such potentials is that one or more coupling constants in
them are fixed to a specific value. There have been instances of CES potentials running
into inconsistencies with threshold boundary conditions [3, 4], but there do exist some which
possess valid asymptotic behaviour. One such acceptable class is the one proposed by Dutt
et al [2] sometime ago and which reads3

V (y) = A

1 + e−2y
− B

(1 + e−2y)1/2
− 3

4(1 + e−2y)2
(1)

where y ∈ (−∞,∞) and A,B are real parameters defining the shape of the potential. Note
the presence of the fixed numerical value − 3

4 for one of the coupling constants in V (y) that
provides its identification as a CES. Potential (1) has for its associated eigenfunctions

ψn(y) = z
1
4 (z − 1)−( c

2 − B
4c

)(z + 1)−( c
2 − B

4c
)P

( B
2c

−c,− B
2c

−c)
n (z) (2)

where z = 1 + e−2y and c is related to the energy eigenvalue −εn as c = n+ 1
2 +

√
εn . Actually√

εn satisfies a complicated cubic equation but it has been observed [5] that only one of its
roots is compatible with the normalizability condition.

3 There is also another class of CES potentials proposed in [2] but by a redefinition of parameters [5] it can be made
equivalent to (1) and so is not considered here.
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Some remarks are in order concerning the derivation of the eigenfunctions (2) and
the energy eigenvalue equation. The Schrödinger equation is subjected to a coordinate
transformation, and the transformation function is chosen in such a manner that corresponding
to an exactly solvable (ES) potential one has a new analytically solvable one. It turns out that
for a half-line–full-line mapping function, one can generate the CES potential for some known
shape-invariant potential as an input. The available energy eigenvalues and eigenfunctions of
the latter then furnish the corresponding ones for the former.

The purpose of this letter is to establish that the CES potential (1) and its accompanying
shape-invariant ES potential are actually dual partners in the sense that the corresponding
time-independent Schrödinger equations are mapped to each other under appropriate space
transformations called dual transformations [6–8]. The latter are known to relate some
apparently unconnected problems both in classical and quantum mechanics. The one-
dimensional harmonic oscillator and the Coulomb problem [9], the latter and the isotropic
oscillator [10, 11], and the Pöschl–Teller and infinite potential well problems [6] are some
examples of dual systems (DS).

In the present context, let us write down the following set of DS given by the pair of
Schrödinger equations (with h̄ = 2m = 1)[

− d2

dx2
+ λ

(
dy

dx

)2

+ ν
dy

dx

]
ψ = µψ (3)

[
− d2

dy2
− 1

2
{x, y} − µ

(
dx

dy

)2

+ ν
dx

dy

]
φ = −λφ (4)

where µ and −λ are the energies, ν is a constant, {x, y} is the Schwarzian derivative, which
can be written as

{x, y} = − 1

y ′2

[
d

dx

(
y ′′

y ′

)
− 1

2

(
y ′′

y ′

)2
]

(5)

where the primes denote derivatives with respect to the variable x . The wavefunctions ψ and
φ are related in the manner

ψ =
(

dx

dy

)1/2

φ. (6)

In DS as above, the energy and the coupling constant µ and λ exchange roles. Further DS are
meaningful when the potential and its partner are expressible as

W(x) = λ

(
dy

dx

)2

+ ν
dy

dx
(7)

U(y) = −µ

(
dx

dy

)2

+ ν
dx

dy
− 1

2
{x, y}. (8)

Generalizations including integral or even fractional powers in the derivatives in (7) and (8)
are straightforward.

We now set dy/dx = coth x, i.e. y = log sinh x: in other words, for y ∈ (−∞,∞) the
variable x ∈ (0,∞) . It implies from (7) that the Schrödinger equation (3) has the potential
W(x) = W̃ (x) + α(α − 1) , where

W̃ (x) = −2β coth x + α(α − 1)cosech2 x x ∈ (0,∞) (9)
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which is ES (for β > α2, α > 0) and shape invariant as well. The energy eigenvalues are
given by [12]

En = −
(

β

α + n

)2

− (α + n)2 n = 0, 1, 2, . . . . (10)

Indeed, the correspondence with (3) is provided by the following identifications:

λ = α(α − 1) ν = −2β µ = En + α(α − 1). (11)

We next enquire into the dual potential U(y) . It is easy to work out {x, y} from (5) as

{x, y} = −(
sech2 x tanh2 x + sech2 x − 1

2 sech4 x
)
. (12)

Hence we find from (8) and (4) that U(y) = Ũ (y) + 1
4 , where

Ũ (y) = [(
1
2 − µ

)
tanh2 x + ν tanh x − 3

4 tanh4 x
]
x=sinh−1(ey )

(13)

εn = α(α − 1) + 1
4 . (14)

The relation between the energies −εn and En turns out to be

εn + En = µ + 1
4 . (15)

On elimination of the parameter α, from (10), (11) and (14) we then get a cubic equation in√
εn, similar to that given in [2]. Further, in terms of the variable y ∈ (−∞,∞), Ũ (y) in (13)

translates to

Ũ (y) =
1
2 − µ

1 + e−2y
+

ν

(1 + e−2y)1/2
− 3

4(1 + e−2y)2
y ∈ (−∞,∞) (16)

which is identical to the potential in (1) for µ = 1
2 −A and ν = −B . Finally, the wavefunctions

for Ũ (y) can be obtained from (6) and yield the same form as in (2).
To conclude we have demonstrated that the CES potential of Dutt et al and its ES partner

form a DS.
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